Hyun Woo Sung

▶ hwsung618@gmail.com in linkedin.com/in/hyunwoosung

EDUCATION

Johns Hopkins University

Doctor of Philosophy (PhD) in Chemical and Biomolecular Engineering

Sep. 2017 - Oct. 2024

Baltimore, MD

University of Massachusetts Amherst

Bachelor of Science (BS) in Chemical Engineering Dean's List 2013-2017; Cumulative GPA: 3.86 Sep. 2013 - May 2017

Amherst, MA

TECHNICAL SKILLS

Cell Work: Primary/Secondary Mammalian Cell Culture, Patient-Derived Cell Culture, Bacteria Culture, Cell Transfection Methods (Electroporation, Lipofection, Viral Transduction), Lentivirus Production and Purification, 3D Cell Culture, Cell Stretching Systems

Molecular Biology: DNA/RNA Purification and Quantification, UV-Vis Spectroscopy, Traditional Molecular Cloning, Bacteria Transformation and Screening, Gel Electrophoresis, In Vitro Transcription, Run-Off Transcription, Polymerase Chain Reaction (PCR), Real-Time PCR, Site-Directed Mutagenesis, Western Blot, Immunoprecipitation, Immunofluorescence, Enzyme-Linked Immunosorbent Assay (ELISA)

Software: ImageJ/Fiji, GraphPad Prism, Maple, MATLAB, Python, LaTeX, Spyder, AutoCAD, Microsoft Office Package, Adobe Creative Cloud

WORK EXPERIENCE

Department of Mechanical Engineering

Graduate Student Researcher, Johns Hopkins University

May 2019 - Present

Baltimore, MD

- Engineered a high-throughput microfluidic system integrating cell purification and electroporation into a single platform for multimolecular delivery
- Tuned electroporation conditions to achieve a 40-fold increase in plasmid expression from baseline conditions and a 76% mRNA transfection efficiency into difficult-to-transfect primary cells
- Developed a clinically translatable biomolecule delivery application enabling combinatorial drug screening to resensitize therapeutic-resistant cancer cells from blood
- Led a collaboration to design a workflow for gene delivery into circulating tumor cell from clinical liquid biopsy samples using the system
- Managed a centralized dashboard for reagent procurement and expense tracking, streamlining laboratory resource inventory over a 4-year period

Department of Anesthesiology and Critical Care Medicine

Jan. 2018 - May 2019

Graduate Student Researcher, Johns Hopkins School of Medicine

Baltimore, MD

- Clarified a molecular mechanism in how endothelial cells respond to inflammatory stimuli, leading to the identification of a new intervention strategy for vascular dysfunction
- Quantified the effects from a nuclear protein knockdown onto extracellular matrix assembly in fibroblasts to identify implications towards fetal lung development disorders
- Developed assays to characterize cell behavior on biomimetic gelatin scaffolds designed to mimic anatomical curvature

Department of Chemical Engineering

Sep. 2015 - May 2017

Undergraduate Researcher, University of Massachusetts Amherst

Amherst, MA

• Designed and built an affordable cyclic compression cell culture platform for well plates to simulate mechanical stimuli of human bone environment with a total cost under \$50

Korea Electronics Technology Institute

June 2015 – Aug. 2015

Data Analyst Internship, IT Materials & Components R&D Division

Seongnam, Republic of Korea

• Optimized a differential dynamic microscopy algorithm for high-speed optical nanoparticle analysis, reducing total image processing time by 80% with minor accuracy deviations of only 2.4%

LEADERSHIP AND TEACHING EXPERIENCE

Undergraduate Mentor

May 2019 - August 2024

Johns Hopkins University

Baltimore, MD

 Mentored 4 undergraduate students on laboratory techniques and experimental methods to support their research projects

Graduate Teaching Assistant

Spring 2020, Fall 2021

Johns Hopkins University

Baltimore, MD

- Enhanced course content to align with evolving industry standards and increased student engagement opportunities by 50% from the previous year, yielding a 22% improvement in course evaluation ratings
- Led recitations and guided computational assignments for a group of 11 undergraduates in a revamped engineering course, contributing to an overall course evaluation rating of 4.5 out of 5

PUBLICATIONS

- 1. Jin, Q., Pandey, D., Thompson, C. B., Lewis, S., **Sung, H. W.**, Nguyen, T. D., [...] & Romer, L. H. **(2023)**. Acute downregulation of emerin alters actomyosin cytoskeleton connectivity and function. *Biophysical Journal*, 122(18), 3690-3703
- 2. **Sung**, **H. W.**, Choi, S. E., Chu, C. H., Ouyang, M., Kalyan, S., Scott, N., & Hur, S. C. **(2022)**. Sensitizing drug-resistant cancer cells from blood using microfluidic electroporator. *PloS One*, 17(3), e0264907.
- 3. Nomura, Y.*, Nakano, M.*, **Sung, H. W.***, Han, M.*, & Pandey, D. **(2021)**. Inhibition of HDAC6 activity protects against endothelial dysfunction and atherogenesis in vivo: a role for HDAC6 neddylation. *Frontiers in Physiology*, 12, 675724. (*Co-equal authorship)
- 4. Kalyan, S.*, Torabi, C.*, Khoo, H.*, **Sung, H. W.**, Choi, S. E., Wang, W., [...] & Hur, S. C. **(2021)**. Inertial microfluidics enabling clinical research. *Micromachines*, 12(3), 257. (*Co-equal authorship)
- 5. **Sung, H. W.** & Hur, S. C. **(2024)**. Vortex microscale electroporator for genetic modification of primary cells. *(In Preparation)*

SELECTED CONFERENCE PRESENTATIONS

- 1. **Sung, H. W.** & Hur, S. C. **(2024)**. Vortex Microscale Electroporator for Genetic Modification of Primary Cells *[Conference Poster]*. MicroTAS 2024, Montreal, Canada
- 2. **Sung, H. W.** & Hur, S. C. **(2023)**. A Microfluidic Platform for Transfecting Primary Cells in Personalized Medicine *[Conference Poster]*. SLAS 2023 Microscale Innovation in Life Sciences Symposium, San Diego, United States
- 3. Pandey, D., **Sung, H. W.**, Romer, L. H., & Berkowitz, D. **(2019)**. Regulation of PCSK9 Levels by the Ubiquitin-Binding Domain of Histone Deacetylase 6 *[Conference Abstract]*. Experimental Biology 2019 Annual Meeting, Orlando, United States
- 4. Pahapale, G. J., **Sung, H. W.**, Sarkar, A., Romer, L. H., & Gracias, D. H. **(2019)**. Assembly and Characterization of Curved and Folded Soft Hydrogel Cell Culture Platforms *[Conference Poster]*. 2019 Biomedical Engineering Society (BMES) Annual Meeting, Philadelphia, United States
- 5. **Sung, H. W.**, Kwak, J. G., Carpenter, R. & Lee, J. **(2016)**. Applying Standardized Three-Dimensional Mechanoculture to Multi-Well Plates *[Conference Poster]*. AIChE 2016 Annual Meeting, San Francisco, United States

AWARDS AND HONORS

Johns Hopkins Healthcare Case Competition – 2nd Place	April 2024
Southeast Healthcare Case Competition – 3rd Place	April 2024
ChE Young Alumni Scholarship	July 2016
Tau Beta Pi/Phi Kappa Phi Honor Society	Dec. 2015
Chancellor's Scholarship	Sep. 2013

PROFESSIONAL DEVELOPMENT